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An interesting phenomenon can be observed when the state-space dynamic
substructural method is applied to the eigenproblem of bladed disk±shaft
systems: whether or not the shaft is ¯exible, each frequency of the single root-
®xed blade appears as a frequency of the whole structure with a multiplicity of
at least (nÿ 3), where n is the number of repetitive blades. The presented result
can be regarded as an extension of previous ®ndings by the authors in the sense
that the commonly interfaced repetitive substructures are allowed to be treated
as a rigid body in modal analysis. The defectiveness issue of the multiple
eigenvalues arising from the repetitive substructures is also addressed. Examples
of rotary wing models and a simpli®ed turbine model are presented for
validation together with attempting their physical explanations.

# 1999 Academic Press

1. INTRODUCTION

A structure containing repetitive components is very common in engineering,
which often brings about multiple eigenvalues in its dynamic analysis. However,
in a practical modal test or dynamic numerical computations, real multiple
eigenvalues of such structures usually only appear as very closely distributed
eigenvalues due to the approximation arising from representing the symmetry in
a ®nite ¯oating point, the uncertainty in applied computing methods or limited
precision in manufacturing the product. In most cases, it is hard to tell whether
those closely distributed eigenvalues are indeed different close eigenvalues or
identical multiple eigenvalues distorted by the approximation or manufacturing
precision. The properties of invariant subspaces associated with multiple
eigenvalues make it even more dif®cult to extract those eigenvalues [1, 2].
Furthermore, if multiple eigenvalues are defective, further dif®culty in
numerically ascertaining the Jordan structure will arise [3]. It is believed that
investigating the mechanism of multiple eigenvalues and developing effective
numerical methods for extracting those multiple eigenvalues are essential for
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understanding the dynamic characteristics in those types of widely used

structures with repetitive substructures.

The dynamic substructure method or the component mode synthesis is an

ef®cient approach to extracting modals from large scale complicated structures

[4±8], which is especially convenient for the assembled structures in which the

parts are much simpler and easier to be analysed. For those with repetitive

substructures, even more advantage should be taken of the geometrical features.

In previous research [9, 10], it was found that there should be a class of (nÿ 3)

multiple eigenvalues for the rotary wing model, where n is the number of blades.

A class of more general structures with (nÿ a) multiple eigenvalues arising from

its repetitive substructures has also been obtained in a more recent investigation

[11], in which the n repetitive substructures have a common interface and they

are mounted on the rest of the structure only through that common interface, as

in the examples illustrated in Figures 1±3. As suggested in reference [11], the so-

called block retaining property in applying the dynamic substructure method or

the component mode synthesis is advantageous and deserves further

investigation. In this paper, research will be extended to more general multi-

bladed structural systems, such as in the helicopter rotary wing model and the

turbine model shown in Figures 4 and 5, in which the sole common interface of

the repetitive substructures will be regarded as a rigid body instead of a ¯exible

one described by a set of degrees-of-freedom. Again the dynamic substructure

method is applied to the investigation of the characteristics of multiple

eigenvalues arising from the geometric symmetry or repetition, making possible

the qualitative modelling of the properties for the whole structure.

Figure 1. A rotary wing model.

Figure 2. A rotary wing model with non-isotropically distributed blades.
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2. PARTITION AND ANALYSIS OF SUBSTRUCTURES

In the dynamic substructure method, the ®rst step is to partition properly the
whole structural system into components according to its geometric and
structural identities. In the bladed disk±shaft system, assuming that there are n
repetitive blade substructures, counted from the ®rst to the nth substructure, the
hub rigid disk then is counted as the (n+2)th substructure and the rest of the
structure or shaft as the (n+1)th substructure, the equation of motion for the
rth substructure can be written as

Mr�xr � �Gr � Cr� _xr � Krxr � f r � �f r: �r � 1, � � � , n� 1�: �1a�

By partitioning equation (1a) according to internal and interface co-ordinates,
one has
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Figure 3. An antenna model.

Figure 4. A rotary wing model with rigid hub.
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A nomenclature list appears in the Appendix. The above equation can be written
as a state differential equation
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where the system matrices
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Introducing the following transformation between the state variables yrj and
generalized co-ordinates qr, and a new set of generalized coordinates�yr, for the
rth substructure
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Modal matrix fffr
s can be obtained by the following substructure analysis:

Figure 5. A simpli®ed bladed disk±shaft turbine model.
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Step 1: due to a ®xed interface, Br
ii is symmetric and positive de®nite. Applying

a Cholesky decomposition for Br
ii, one has:

Br
ii � Lr

BL
rT

B : �4�

Step 2: ®nd the eigensolution for matrix �Lr
B�ÿ1Ar
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where LLLr is the Jordan form of matrix �Lr
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arranged from lower to higher frequencies.
Step 3: de®ning fffr
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Substituting equation (3) into equation (2), and premultiplying it by (�ccc
r�T, it

follows
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3. SYNTHESIS BASED ON THE RIGID DISK

On each interface node, the transitional and rotational displacements must be
compatible with the displacements of the rigid body, and all the forces and
moments from the substructure interfaces to the rigid body and its inertial and
damping forces are in equilibrium, therefore,
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where equation (10b) is the linearized governing equation of motion in the state
space for the hub rigid disk and
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Considering equation (11), �T
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The transformation of the ith nodal co-ordinate on the interface of the rth
substructure to the global co-ordinate is illustrated in Figure 6.
The assembled equations for the whole structure can be obtained by

combining equations (9), (10a) and (10b) as

~A _~y� ~B~y � ~F, �14�



VIBRATION WITH MULTIPLE BLADES 603
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Figure 6. Local and global co-ordinate systems.
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Matrices AÄ and BÄ possess a nature of the block structure at the same level as
substructures because the block feature re¯ects the geometric characteristics of
the original structure.

4. VIBRATION CHARACTERISTICS

With the block structure of the assembled system matrices obtained by the
dynamic substructure method, the qualitative properties of the whole structure
can now be discussed.
Proposition: For a structure containing n repetitive substructures mounted on a

rigid body, which are oriented by rotation about a ®xed axis in space, and
connected to the rest of the structure only through the rigid body, (1) each
eigenvalue of the repetitive substructure with a ®xed interface is one of the at least
(nÿ 3)-multiple eigenvalues of the whole structure; (2) corresponding to each
mode of the repetitive substructure with the ®xed interface, the whole structure has
(nÿ 3) independent mode shapes, which are combinations of the modes from the
repetitive substructures.
Proof: the eigenvalue problem de®ned by equation (14) can be written as:

�~A� m~B�~y � 0: �15a�

Adopting full principal modes in the transformation (3), the characteristic
equation (15a) becomes equivalent to the eigenvalue problem for the whole
structure. If for a test number m, the number of independent solutions yÄ to
equation (15a) is a, m will be at least (2Nÿ a) multiple eigenvalues of the system.
First, trying a m with a non-defective eigenvalue lk of the repetitive substructures
with a ®xed interface, equation (15a) will be in the following form:
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Denoting qr for the mode of the repetitive substructure corresponding to lk,
taking
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and substituting the above vector into equation (15b), according to the de®nition
of yÄ , one obtains automatically the ®rst (n+1) block equations of (15b). The
last block equation of equation (15b) will be satis®ed ifXn

r�1
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From equations (11), (12) and (13), there are only 26nk+1 independent
equations in the matrix equation (17), i.e.,

a1 � a2 � � � � � an � 0

a1 cos y11 � a2 cos y21 � � � � � an cos yn1 � 0

a1 sin y11 � a2 sin y21 � � � � � an sin yn1 � 0
� � �

a1 cos y1nk � a2 cos y2nk � � � � � an cos ynnk � 0
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8>>>>>>>>><>>>>>>>>>:
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From the assumption that all blade substructures are oriented by rotation about
a ®xed axis in space, the azimuthal angles of the node on the interface between
the blade substructure and the rigid disk satisfy the following relationships, i.e.,

�yr�11 ÿ yr1� � � � � � �yr�1i ÿ yri � � � � � � �yr�1nk
ÿ yrnk�, �r � 1, � � � , nÿ 1�: �19�

Taking equation (19) into consideration, the number of independent equations in
equation (18) can be reduced to 3 by direct trigonometric manipulations, which
can be written in matrix form as

cos y1i cos y2i � � � cos yni

sin y1i sin y2i � � � sin yni
1 1 � � � 1

264
375 a1

..

.

an

8><>:
9>=>; � 0, �20�

where i may be an arbitrary number belonging to {1, � � �, nk}. According to the
matrix theory, the number of independent non-trivial solutions for equation (20)
is at least (nÿ 3).
Supposing that the repetitive substructure has a defective eigenvalue lk, its

Jordan block and the associated principal mode matrix are assumed to be Jk and
QJ, respectively; then

~A~YJ � B~YJJk, �21�
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where

~YJ �

a1QJ

..

.
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0
0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
: �22�

The number of solutions {a1, � � �, an} which satisfy equation (21), is also (nÿ 3).
From the physics point of view, if for a mode of the whole structure, the

interface forces and moments from repetitive substructures are in equilibrium for
the rigid body, the mode behaves as if the rest of the structure is rigid. In such
a case, the frequencies of the single repetitive substructure appear as the
frequencies of the whole structure. The proposition shows that the multiple
eigenvalues arising from the repetition of the substructures introduce no new
defectiveness to the eigenvalue problem of the whole structure.

5. NUMERICAL EXAMPLES

5.1. EXAMPLE 1. ROTARY WING MODELS WITH A RIGID HUB

From the theoretical results in the previous section, each eigenvalue of the
single blade with root ®xed is at least 1, 3, 6 multiple eigenvalues, respectively,
of the 4, 6, 9 bladed rotary wing model with a rigid hub. The numerical results
on a gyroscopic eigenvalue problem for the single blade, the 4, 6, 9-bladed rotary
wing models, are listed in Tables 1±4, respectively. The blade parameters are:
E=2�16 1011 pa, �=0�3, rl=1�136 10ÿ1 kg/m, cross-section
Jy=1�1676 10ÿ11 m4, Jz=1�1676 10ÿ8 m4, A=2�2316 10ÿ5 m2, blade length
lb=0�508 m. The shaft parameters are: E=2�16 1012 pa, �=0�3,
rl=1�136 10ÿ1 kg/m, Jy= Jz=1�1676 10ÿ8 m4, A=2�2316 10ÿ5 m2, shaft
length ls=0�2 m. The diameter of the rigid disk: d=0�2032 m, the mass, inertial
moments about the rotation axis and diameter: md=1 kg, IR=0�2 kg m4,
Id=0�1 kg m4. The rotating speed of the model: O=300 r.p.m. The method for
solving eigenvalue problems described in references [9, 12] was adopted.

5.2. EXAMPLE 2. A SIMPLIFIED TURBINE MODEL

As shown in Figure 5, this model has 16 turbine blades. For simplicity, the
non-rotating eigenvalue problem is solved with brick elements in the ®nite
element modelling. The frequencies of the single blade with its root ®xed are
shown in Table 5. The rigid hub disk was simulated by brick elements with a
high elastic modulus. From Tables 6a±c, one can see the convergence of the

TABLE 1

The first four frequencies of the blade (rad/s)

72�0667 413�175 1132�14 1994�81
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TABLE 2

The first 18 frequencies of the 4-bladed rotary wing model (rad/s)

71�9539 71�9541 72�0665 72�0667 207�084 328�362
329�768 413�169 413�175 414�242 414�263 1132�10
1132�14 1132�29 1132�29 1706�79 1723�35 1994�81

TABLE 3

The first 27 frequencies of the 6-bladed rotary wing model (rad/s)

71�8975 71�8980 72�0664 72�0667 72�0667 72�0667
202�588 326�038 328�104 413�166 413�175 413�175 413�175
414�714 414�759 1132�08 1132�14 1132�14 1132�14 1132�36
1132�26 1637�26 16597�07 1994�81 1994�81 1994�81 2134�84

TABLE 4

The first 40 frequencies of the 9-bladed rotary wing model (rad/s)

71�8131 71�8142 72�0663 72�0667 72�0667 72�0667 72�0667
72�0667 72�0667 196�377 322�654 325�685 413�161 413�175
413�175 413�175 413�175 413�175 413�175 415�358 415�449
1132�04 1132�14 1132�14 1132�14 1132�14 1132�14 1132�14
1132�44 1132�45 1554�38 1577�71 1994�81 1994�81
1994�81 1994�81 1994�81 1994�81 2200�92 2221�36

TABLE 5

The first four frequencies of the turbine blade (rad/s)

833�861 1375�13 4294�32 4933�46

TABLE 6

The first 18 frequencies of the 16-bladed turbine model (rad/s)

(a) Disk elastic modulus: E=2�16 1011 pa
290�05 544�66 544�67 807�90 808�02 808�02 808�38 808�39 808�97
808�97 809�60 809�95 810�73 810�73 811�47 811�47 813�65 813�65

(b) Disk elastic modulus: E=2�16 1013 pa
292�47 561�54 651�54 833�57 833�57 833�58 833�58 833�58 833�59
833�59 833�59 833�60 833�60 833�60 833�61 833�61 933�52 933�53

(c) Disk elastic modulus: E=2�16 1015 pa
292�49 561�76 561�76 833�85 833�85 833�85 833�86 833�86 833�86
833�86 833�86 833�86 833�86 833�86 833�86 833�87 934�37 934�37
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multiple eigenvalues to that of the single blade as the elastic modulus of the disk
increases from 2�16 1011 pa to 2�16 1013 pa and to 2�16 1015 pa. The
diameters of the shaft and the disk are 0�2 m and 0�6 m, respectively. The end-
to-end length of the shaft is 2�5 m. The thickness of the disk is 0�1 m. The blades
all have uniform cross-section: 0�1 m6 0�59 m with a length 0�6 m. All blades
have a uniform pre-twist of 50�/m, but still being oriented in the direction of the
disk radius. The material properties of the blade and the shaft are E=2�16 1011

pa, �=0�3, r=7800 kg/m3. The mass density of the disk is also 7800 kg/m3.

6. CONCLUSION

The procedure of obtaining analytical results in this paper has demonstrated
that the dynamic substructure method has the potential to be used to investigate
the dynamic characteristics qualitatively for those structures containing repetitive
components because the symmetry of a structure can be retained in the
analytical expressions. The results of multiple eigenvalues of the bladed disk±
shaft system and their non-defectiveness have enriched the understanding to the
dynamic characteristics of that type of structures. One may anticipate that the
multiple eigenvalues arising from other types of geometric repetition or
symmetry do not introduce defectiveness to the structural systems, either.
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APPENDIX: NOMENCLATURE

(�)r variable (�) is related to the rth substructure
Mr mass matrix of the rth substructure, positive de®nite
Gr gyroscopic matrix of the rth substructure, skew symmetric
Cr damping matrix of the rth substructure, symmetric
Kr stiffness matrix of the rth substructure, semi-positive de®nite
xr the nodal displacement vector for the rth substructure
f r external force vector exerted on the rth substructure
�f r internal force vector exerted on the interface of the rth substructure
Mh the linearized mass matrix of the hub rigid disk, size 66 6
Gh the gyroscopic matrix of the hub rigid disk, size 66 6
Ch the damping matrix of the hub rigid disk, size 66 6
i index of internal variables for substructures
j index of interface variables for substructures
N number of degrees of freedom of the whole structure with the FEM

discretization
mr

i number of degrees of freedom of the internal part of the rth substructure
mr

j number of degrees of freedom of the interface part of the rth substructure
mr

s number of retained Jordan blocks for the rth substructure
q generalized co-ordinate
�fff
r

s the left principal mode matrix of the rth substructure with interface ®xed,
size 2mr

i6mr
s

fffr
s the right principal mode matrix of the rth substructure with interface

®xed, size 2mr
i6mr

s

fffr
c the constraint mode matrix of the rth substructure, 2mr

i62mr
j

Tr the transformation between the interface co-ordinates in the local co-
ordinate system of the rth substructure and the global co-ordinate system

x displacement vector
xh the linearized displacement vector of the hub rigid body, including 3

translation and 3 rotation displacements, size 66 1
yh the state vector of the hub rigid body in global co-ordinate system, size

126 1
nk the number of nodes on the interface between the blades and the rigid hub

disk
yri the azimuthal angle of the ith node in the interface of the rth blade and

the disk
zi the axial co-ordinate of the ith node in all the interfaces between blades

and the disk
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di the diameter of the circle on which the ith node on interfaces between
blades and the disk are positioned
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